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Abstract. In previous papers, with the same series titleabrinitio procedure was developed

for deriving a Lorentz invariant equation with arbitrary spins. This equation is linear in the four
momentump,, and its coefficients are matrices that can be expressed in terms of ordinary spin
and what we called sign spin. In the present paper we consider this equation in an external field
A, which implies just replacing, by IT, = p,—A, and discuss the cases whég = %(rz/az)

(a = /mc2/hQ, Q being the frequency of the oscillatott = 0 andAg = 0, A = 1(r x H)
corresponding respectively to harmonic oscillator potential and a constant magnetic field. By
using an appropriate complete set of states, with part of them characterized by the irreps of
the chain of groups S4) > SU;(2) ® SU,(2) where the subscripts and respectively stand

for the ordinary and sign spin, the problem can be formulated in a matrix representation whose
diagonalization gives the energy spectrum. For simplicity we shall only consider the symmetric
representatiorin} of SU(4) for which s = ¢, and our interest is focussed on the case when the
external field is weak, which gives the non-relativistic limit, and where a perturbation analysis
can be applied. We show that the expected non-relativistic result can be obtained only when the
sign spin projection takes its maximum value, i.e. when all individual states contributing to the
final one correspond to positive energies. In the case of constant magnetic field, we obtain the
gyromagnetic ratio As consistent with other derivations.

1. Introduction

In two previous papers [1, 2] with the same series title (in what follows these will be
referred to as | and IlI) we discussed how a relativistic wave equation of arbitrary spin could
be formed from the sum of free particle Dirac equations in which all the momenta are
taken as equal. In | we used the, 8, i = 1, 2, 3 formulation of the Dirac equation and

in Il the y,, v =0, 1, 2,3 formulation. However, in both cases our main interest was to
show that the matrices mentioned could be decomposed into direct products of ordinary spin
matrices and a new type of them that we call sign spin. The problem reduces then to one in
terms of the generators of a&) group, entirely similar to the one in the spin—isospin theory

of nuclear physics and hence the name of supermultiplets in the title. In | we characterized
our states by irreps of the @) > U(2) ® U(2) chain of groups in whichJ(2), U(2) are
respectively the ones associated with the ordinary and sign spins. In Il, where we used the
y notation and proved that our equation of arbitrary spin is Posaarariant, we noted

that our problem is also invariant under a unitary symplectic subgrow) 8pU(4) and as
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the former is isomorphic to (3) we could characterize our states by irreps of the canonical
chain 5) > 0(4) > 0(3) > 0O(2).

For the integrals of motion associated with a given irrep ¢5)Qve have, in general,
several possibilities of spins and masses for our particle, as shown in II.

In Il we discussed only free particles, but in another publication [3] we analysed the
effect of an external potential, which for simplicity we took as the harmonic oscillator,
on our particle in they;,, 8,, i = 1,2,3, u = 1,2,...,n, formulation. The results for
positive energies made sense in the case of a weak potential, i.e. much smallefcthan
wherem is the lowest mass of our particle, but became less clear when we had a strong
potential, i.e. of ordemc?.

This situation led us to discuss in this paper what the correct non-relativistic limit of
a particle with arbitrary spins in an external potential is, in order to see from which one
we could extrapolate our results as the potential increases. In this paper we start with the
y formulation, so as to have a Poinéanvariant problem in the free particle case which
we called the Bhabha equation [4, 5], and introduce a potential by the minimal extension
in which the momentum four vectarp,, v = 0,1, 2, 3 is replaced byp; — A/, where
A’ is also a four vector. The prime is used to indicate that all quantities are in CGS units.
We shall discuss the problem in a particular frame of reference in whijctakes a simple
form, for exampleAy = (mQ2r?/2), A, = 0; i = 1, 2, 3, the harmonic oscillator potential
or Ay =0, A} = (e/2)(r' x H');, the external constant magnetic field.

2. The Bhabha equation in an external field

From the discussion given in Il [2] and the observations in the last paragraph of section 1
above we conclude that the wavefunction of a Bhabha particle in an external field satisfies
the equation

[V (cp, — A}) +nmc?]y =0 (2.1)

where, as above, we use CGS units and denote the four momerijtiand its minimal
extensionA;, with a prime, as we wish to reserve the ordinary form of these letters when
using appropriate units.

As indicated in equation (2.6) of II' is given by

=Yy (22)
r=1
wherey,” is the direct product of 4« 4 matrices
VW=I®I  -QIQy' Q@I---®I (2.3)

with ¢ in the r position and in it the Pauli matrices, i = 1, 2, 3 are replaced by;,.
As we indicated in Il they’ can be expressed by direct products involving22
matrices corresponding to the ordinary and sign spins given respectively,by; j, k =

1,23 r=12,...,n, as well as their appropriate unit matrices/. From equation (3.6)
of Il we see that equation (2.1) can then be written as
[4i Rjo(cp} — A)) + 2Ts(cpp — Ap) +nmc®]y =0 (2.4)

where repeated latin indies are summed over their vajuesl, 2, 3 and R;,, Tz are part
of the 15 generators of an @) Lie algebra given by equation (3.9) of |, i.e.

S=>Gu®D)  Rj=Y Gu®5) L=y dey). (25

r=1 r=1 r=1
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As we showed in equations (3.13) and (3.14) of | the ordinary and sign spin part of our states
will be characterized by a patrtitiofh} of n in at most three numbers, > hy, > hz > 0,

h1 4+ ho + hs = n. In the present paper we shall, for simplicity, limit ourselves to the
symmetric partitioni; = n, hy, = h3 = 0 and denote it byrn} . Furthermore the ordinary

and sign spin states will be characterized by th€@s& sti(2) algebras in equation (3.13)

of | and their corresponding(2) ® 6(2) subalgebras so their ket can be denoted as in
equation (3.14) of | by

[{n}sott) (2.6)

where no irrep(s, ) of si(2) ® sli(2) is repeated so the extra quantum numbein
equation (3.14) of | is not required. We note also that for the symmetric representations
{n} of sw4) the irreps of the subalgebras(8f, si(2) are the same [6], i.es = ¢ and
o,t =s5,5—1,...,—s. Thus in the following we either suppress ther replace it bys
in (2.6).

The orbital part of the states in (2.4) depends on the particular form of the external
potential A} and thus will be discussed in the next section.

3. The wave equation for a Bhabha particle in a harmonic oscillator potential

We shall now assume that, in a particular frame of reference, the minimal extensipfy of
is an oscillator potential for =0, i.e.

Ay=3mQ%?  Al=0 i=123 (3.1)

wherem is the mass of the particle arfd the frequency of the oscillator.
The first convenient step for attacking the problem is to divide equation (2.4)By
and then replacg’, j =1,2, 3, by p;, andr’ by r through the relations

P = mQm)p; v = A/ mY?r (3-2)

so that equation (2.4) becomes dimensionless.

Furthermore, as\), does not depend on the timep is an integral of motion and in
the metric we use, the covariagp; is equal to the negative of the contravariant one, i.e.
—cp'©, with the latter being the energyE of the particle. Thus after carrying out all these
replacements we see that equation (2.4) transforms into

4iRj2pj
a

a= ,/’;1_1—;2 (3.4)

and in the non-relativistic limit: > 1 or h1Q < mc?.
We note from the definition (2.5) dfs, that in the basis of the states whose ket is given
in (2.6), its matrix representation is diagonal and could be written as

Tar’tas’x80h~ (35)

If nis odd, t is semi-integer and, as it cannot take the value 0, the inversg ekists

and is given by (3.5) ifr is replaced byr 1. If n is even,r can take the value 0 and
thus the inverse remains undefined, but as we can project out this value, as indicated in [7],
we can still assume the existence Bf* for all values ofr except 0. Furthermore, in

E 172
o yn+2m:l |y =0 (3.3)
mc? 2 a2

where
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equation (3.8) of Il we have that the commutat@g,[R;1] = iR;>, so using this result
in (3.3) and multiplying equation (3.3) b§273) ! we can write it as

(E/mc®) Y = [(2/a)(Rjx — T3 *Rj1To) pj + (2a%) 712 + n(2T3) ]y

= (H/mc®)y (3.6)

where the term in the square bracket can now be considered as our Hamiltbraarits
eigenvalue is the energy, both in units ofmc?.

As equation (3.6) is not soluble exactly we need its matrix formulation with respect to
an appropriate basis which we proceed to determine. The ordinary and sign spin part was
already obtained in (2.6). For the orbital part we choose a three-dimensional oscillator of
unit frequency, as required by relations (3.2), and which we denote by the ket

|Nlp) = Ryi(r)Y1,(0, ¢) (3.7

with ¥, being the spherical harmonic am)y; the radial part.

For the complete ket we coupleand s to the full angular momentunj, as it is an
integral of motion becaus®;; is a first-order Racah tensor [8] in both ordinary and sign
spin and it is contracted with the momentym Thus our ket becomes

IN(,s)jm; {n}st) = Z(l“’ so|jm)INlp)|{n}sost) = |¥) (3.8)

no

where (-|-) is a Clebsch—Gordan coefficient and we take into account that we are dealing
with the symmetric irredn} of su4) so thatr = s.

Before evaluating the matrix elements O /mc?) in the square bracket of (3.6),
between bras and kets of the form (3.8), it is convenient to exiggs (where the repeated
index j is summed over its values= 1, 2, 3) in terms of the spherical components. From
the definition of these components for a vector.e.

vy = —(1/V2)(v1 + ivp) vp = V3 v_ = (1/V2(v1 —iva)  (3.9)
we see that
Rjpj =Y (=D?(1/V2(=Rys + Ry )p—4 g=+1,0,—-1 (3.10)
q

with the subscript: denoting theg-values as; = +1.
Using then the standard results of Racah algebras [8], as well as the Wigner—Eckart
theorem, we obtain the matrix elements

(N'(I', s") jm; {n}s't|(H/mc®)|N (L, s)jm; {n}st)
= {@/208yx880580: | + W |21 - (/2]
x (=D + 125" + D]V
x W(ll'ss's L)(N'U'|| pINL) {{n}s's" || R || {n}ss)
X (VD) [—(s7, 1Us't") + (57,1 — 1|s/1:’)]}

+{ @720 N V1IN y,8.800 ) (3.11)

where W and (-|-) are respectively the Racah and Clebsch—Gordan coefficients and the
reduced matrix element&V'l’|| p||NI), (N'l'|r?||NI) are given in [3, equation (5.6)]. It



Supermultiplets and relativistic problems: Ill 10021

remains for us to discuss the reduced matrix elemenRgf, ¢ = +1,0, -1, for the
symmetric partition{rn}. It was originally obtained by Ahmed and Sharp [9], but this
contained a misprint. We re-derive it in appendix A and obtain

\/(2s TD)m/2—s)n/2+s+2)
ss+1 25+3

({n}s's" RIl{n}ss) =

53’5 + 8s’s 1

5 _ 5 (3.12)

+(n+2) (2s+1)(n/2+s+1)(n/2—s+1)}

Thus the algebraic expression for all the matrix elements of the opdiataic?, given
by the square bracket in (3.6) with respect to the states (3.8), is fully determined. We now
proceed to analyse its different terms to arrive at its non-relativistic approximation.

We note that in (3.11) there are three curly brackets which correspond to increasing
powers of the parameter/d. The first of power 0 in 1a is diagonal in all the quantum
numbers, and is given hy/2z, so it corresponds to different masses (or rest energies) of

the Bhabha particle [2], and whetecan take the values/2,n/2—1, ..., —n/2. Itis the
zero-order approximation to our energy (in unitsnef?) and thus we can denote it as
€, =n/2t. (3.13)

Note that in Il the letten. replacesr.

The second curly bracket is of power 1 ifial However, We cannot use first-order
perturbation theory to evaluate it because, from the Clebsch—Gordan coefficient appearing
there, it vanishes it’ = 7, whatever the values of the other quantum numbers. Thus we
are forced to go to second-order perturbation theory [10] to obtain its contribution to the
energy through the evaluation of

o (¥]0ly") 1/f|0|1/f>
‘=3 Z

Eo_eo

(3.14)
where|y) is a shorthand notation for the ket (3.8) whijl¢’) has the same meaning with
all the quantum numbers primed excgpin. The operatol© is given by

= 2[(Rj1py) — T3 *(Rj1p;)Ts] (3.15)
but asTj; is diagonal in all guantum numbers and with valyeusing (3.5) we have

[1- /0l - (z/7")]
aZZ{ T/t /T

[n/2t) — (n/21")] <‘”'Rf11’f"ﬁ’><‘ﬂ’le1pjlw>}

(3.16)

18 3 (Y| Rp; [} | Ryapj 1)
T d2n = T —1 ’

The matrix element ofy/'|R;1p;|¥) is given by the second curly bracket in (3.11) when
we suppress the factor 2ft (z/t’)] and thus, because of strong selection rules, the
summation overy’ involves only a few terms and in particulaf = T & 1. The analysis

is straightforward though laborious and is sketched in appendix B; thus we state only the
simple result here:

1/2t\(N+3
d=—(=Z (V+3) for any state|y) of (3.8). (3.17)
7 a2\ n 2
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We now turn our attention to the last curly bracket in (3.11) which contélris)?, but
where first-order perturbation theory can be applied to obtain

1(N+3

1
& = 55 Wity = 5 — 2. (3.18)

Thus the total energy up to terms (fh/a)? is given by
(E/mc®) =€) + €] + ¢

n, 1<g)(N+§) 1N+

T2t a?\ n 2 a? 2
n  1(N+3\[/2t
—Z-f-?( > )(74-1) (3.19)
Multiplying both sides of (3.19) bync? and using the definition (3.4) far, we obtain
n _ 1/2t
E=|—|m?+@®Q(N+3)| (= +1)] 2
<2t>mc + (h)( +2)[2<n + )] (3.20)

For a givenn the energyE depends only on the total number of quaiaand on the
T eigenvalue of the projectioffi; of the total sign spin.
We note that ifr takes its maximum value = n/2 then

E —mc® =hQ(N + ). (3.21)

These would be the eigenvalues of the non-relativistic Hamiltonian

p/2

2m
which is the one we would expect.

On the other hand, it # n/2 we would still have an oscillator Hamiltonian but with
massm’ and frequency2’ given by

m' = m(n/2t) Q= Q[%(Zﬂ_r + 1>] (3.22)

Thus we see that the correct non-relativistic limit is achieved only whenn/2, which
implies that all individual sign spin projections involved are pointing upward, i.e. that we
are only dealing with positive energy states as is usually assumed for the physical part of
the state in relativistic quantum mechanics. Other properties of the results derived in this
section will be discussed in the conclusion.

EQ%(pZ +r?) = + %mQZr’Z

4. The wave equation for a Bhabha particle in a constant magnetic field

We shall assume, in a particular frame of reference, that the minimal extensigt) &f a
constant magnetic field which implies we have

Ap=0 A, =(e/2( xH); j=123 4.1)

in (2.1). The first step for attacking this problem is to divide equation (2.4), in which
is given by (4.1), bync? to make it dimensionless. Furthermore, as in the previous section
cpy = —cp® = —E. Besides we replacg;, r;, H;, j = 1, 2, 3 through the relations

pj’ = mcpj VJ{ = (E/mc)rj H/ = n — H (42)
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so that equation (2.4) becomes
E

|:4iRj2Hj — 2T3—2 + I’lilw =0 (43)
mc

in which repeated latin indexes are summed over the valuesdl, 2, 3 andIl; is given by

M = p; — 3(r x H);. (4.4)

As in the previous section, we now use the commutéfer R;1] = i R;» and the reciprocal
of T3 to write (4.3) in the form

(E/mc®) Y = {2[Rjx — T3 'R T3] [pj — 2(r x H);] +n(2T3) 7} ¢

= (H/mc?)y. (4.5)

We select our coordinate frame of reference in such a wayxthat in the direction of the
magnetic field, and define the creation and annihilation operators in the plane perpendicular
to the field as

Y ) M I (R

i=12 (4.6)
Furthermore, in spherical components these operators became
1 1
me=snin) £ = SEFiE). 4.7)

The term whose matrix elements are more difficult to determine?;id1;, so using
equations (4.7) and the reasoning in I, we first write it in spherical components of the
Rj1, as in equation (3.23) of |, i.e.

1/2 1
Rj,11; = l(z) [n+(—R_4 + R_) +ET(—R s + R+ —2(—R0+ + Ro-) ps.

7
(4.8)

The states with respect to which we want to determine the matrix elemeriisané given
in equation (3.21) of | by the ket
ntv—o _y
ny n-
+v—o, v, kinlsot) = | ——————
e tnso) <«/(/L+v—0)!v!
where |0) is the ground state of the two-dimensional oscillator and, as in section 3, we
restrict ourselves to the symmetric partitior} sos = ¢.
Our objective then is to determine the matrix elements

(w+v—o', v, kin}s'c't'|(H/mc®)|u+v — o, v, k{n}sot) (4.10)

|O)>dkx3|{n}sast) = |v) (4.9)

where o is the total angular momentum in the direction of the magnetic field, i.e.
uw=ny —n_+o andn,,n_ are the number of quanta i, — directions, i.e. exponents
of n,, n_ in (4.9). Theu does not change in the bra and ket, because it is an integral of
motion; the same holds far=n_ andk as well as for the symmetric partitioin}.

Using the shorthand notatidsio t) for the ket (4.9), i.e. suppressing all the integrals of
motion, we obtain

(s'o’t'|(H/mc?)|sot) = ;—T&m&'rrsa/g +2(1—[t/t'D(s'o’t'|Rj1 1T |soT). (4.11)
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Then using the expression (4.8) f&I1; we see that we can determine the matrix
elements explicitly with the help of the fact that

ntlny) =vny +1ny +1) £¥Iny) = nying = 1). (4.12)

We note also the first-order Racah tensor character in both ordinary and sign spjg, of
so from the Wigner—Eckart theorem we obtain

({n}s'c’s't'|Rzl{n}sost) = (so, 1q|s'o") (st, 1g|s't") ({n}s's || R ||{n}ss) (4.13)

where (-|-) are the Clebsch-Gordan coefficients and the reduced matrix elemehtiof
given explicitly in (3.12).

As our HamiltonianH is divided bymc? we see that to analyse the non-relativistic
limit we must assume that the dimensionl¢ss/2)Y/? andk are much smaller than 1. Thus
in equation (4.11) the term of order 0 is given by2t, which corresponds to the different
masses (or rest energies in unitg?) of the Bhabha particle [2] and, as in section 3, we
denote it by

- n
€ 57
The second term in (4.11) is of the ord@t/2)¥/? or k, both of which we assume much
smaller than one, but we cannot consider them in first-order perturbation theory as their
matrix elements vanishes f' = r. We thus have to go to second-order perturbation
theory, which from (4.11) becomes

rva =4 Z [1 (T/T/)][l - (‘L'//'L')]

Eo_eo

(4.14)

sot|Rj1I1;|s'0’t")(s'o't'|Rj1 11} |so T)

s'o't’

/ T—1
_)O'I

where because of (4.8) we have the selectionrtlest+1; 6’ =0+1,0; s'=s%1,s.
Substituting in (4.15) the value d@;1I1; given in (4.8), one obtains in a straightforward
but laborious way, which is sketched in appendix C, the result that

50 tHo 2 21\ k?
€ =—H(M+U—U+2)+m|:< +1> —s(s+1)i|+(7)5. (4.16)

Asu=n, —n_+o,v=n_, for the total energy we can write

2 _n ﬂ 2t 2 tHo 2_
(E/mc)—21+(2>< )(2n++1)+ —k —ns(s+1)[( +1) s(s+1)].

(4.17)

The first term in (4.17) is the rest mass in unitsnof?, the second term comes from the
interactions of purely orbital motion with the magnetic field, and is the one we expect non-
relativistically if the mass, in unitg:c? of energy, isn/2t. In addition to being related to
7/n, the last term is related to the spinand its projectiorns. It is this term that gives a
non-trivial correction to the non-relativistic result.

As in section 3 the most important case will come when we consider purely positive
values of the projection of the sign spin, i.e. when= n/2. Then of course = n/2, and
our energy in cgs units becomes

5 ehH k2 eh Ho
E-me =t )t ot

(4.18)
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As in this case:/2 = s, the gyromagnetic ratio is/1 for the state of maximum sign spin in
the symmetric representatign} of su4). This result is in agreement with other derivations
of the gyromagnetic ratio [11-14].

We note, however, that if # n/2 we obtain a result in (4.17) which is quite different
from those we expect in the non-relativistic limit.

5. Conclusion

Our conclusion is that the correct non-relativistic limit corresponds to the maximum
projection of the sign spin, i.ec = n/2, and that we should extrapolate from this state,
variationally and perturbationally, so as to obtain values for strong external fields that make
physical sense, i.e. that involve only positive values for the projection of all the sign spins.
This suggests that when wishing to obtain the correct spectrum for a relativistic problem, it
is convenient to express the matrices as direct products of ordinary and sign spin ones.
We then select a complete basis on which to give a matrix representation of our relativistic
Hamiltonian, but carry out a perturbation calculation on it in which the initial and final
states have only the value% for each of the sign spins. This then guarantees that we
obtain the positive energy part of our energy spectrum.

Appendix A. Calculation of the reduced matrix elements ofR

To find the reduced matrix elements &f for the symmetric partition{n}, we first start
with the basis states which can be obtained by using4sd SU(2) @ SU(2) chain of
groups. We first define,;, £ as the boson creation and annihilation operators. The index
w =12 3, 4 is characterized by spin-sign spint) values as follows:

m 1 2 3 4
@ G G-3 (=33 (=533
For symmetric partitions the indextakes only one value¢ = 1 which we suppress.

The basis states [7] correspond to the product of powerg, &nd (11174 — n2n3). The
highest state of the multiplgks) is then given by [9]

(A.1)

(25 + 1) s n/2—s
i = \/(n/z 21 o ez (A-2)

The matrix elements ofR,; can be calculated by using the following correspon-
dence [15]:

Ri = iC} Roo=3(C1 —C5—C3+Cy) (A.3)
whereC! = 5,&" are the SW4) generators which satisfy
[ci.cll=cysl —cr'sy  since [£",y,] =8 (A.4)
Using relations (A.2)—(A.4) we obtain
Rii|{n)ssss) = 2\/(2S + 1)(”/?2:1-;)2)(71/2 =) H{n}s+1,s+1s+1,s+1) (A5

Rool{n}ssss) =

1 \/(23+1)(n/2+s+2)(n/2_s)|{n}s+1,s,s+l,s>

2+ 1) (25 +3)
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s(n+2)
4(s + 1)

We then use relation (4.13), and by noting tifat; ; = Ril we obtain the reduced
elements ofR as given in (3.12).

|{n)ssss). (A.6)

Appendix B. Calculation of €] for the harmonic oscillator

The second-order perturbative enekdyin 1/42, given in (3.14), can be evaluated using
the matrix elements oR;; p; written in (3.11). By substituting in (3.11) the reduced matrix
elements ofR shown in (3.12) and those ¢f given by

[+ 1
(N pINT) = T S 8111
21 4 17 NNE 21/+1 By

where
Ay =N +1+38yni1+ N —18yn-1 (B.1)
By =~N =1+ 28yyi1+~N+1+Lyy1
we obtain

(Y'IRjipi1¥) = —(Ss 1 (D' @s + D(n/2 = 5)(n/2+ 5+ 2)
x [—(s7, 105 + 1t + 1) + (s7, 1 — 1fs + 1t — 1)]
WI+IWL + Lss + 15 1)) Ay + VIW U — Lss + 1, 1) By |
g (DY@ F D +2)
x [=(s7, 1057 + 1) + (s7, 1 — 1|st — 1)]

x (VI +IW 3+ Lss; 1) Al + VIW AL — Lss; 1)) By }

+;‘%3_Y,X_1(—1)1’+S*f Vs +Dn/2+s+1Dn/2—s+1)
x [—(s7,1ls — 1t + 1) + (s, 1 — s — 1t — 1)]

(VIFIW3L 4 Lss — 1 1) Ay + VIW3L = Lss — 1, 1)Byy ). (B.2)

We then substitute the explicit expressions for the Clebsch—Gordan and Racah
coefficients, and note that

azz (W IRjpi1¥")1? (8.3)

T—1

becauseR;1 p; is a Hermitian matrix. We further note that the terms with= ¢ — 1 give
positive contributions while those with' = t + 1 give negative contributions because of
the presence of the factér — t’) in the denominator of (B.3). Thus we have

t(N+3/2) [—(n/2—s)n/2+s+2)[ A N B N
dna?(2l + 1) (s +1D2(2s + 1) 2+3 2-1

j—
€ =
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(n/2+1)2|: c D }

s2(s+1D2|[20+3 21-1
n/2+s+1)n/2—s+1[ E F
225 + 1) [21+3+ 21_1“ B4
where
A=0D+3b+2)d+2)(d+1 B=(+2C+Df(f—-D
C=0B+2)(d+D(f+De D=0b+1fdle+1) (B.5)

E=(f+2(f+De(e—-1 F=0b+1bdd-1)
b=j+Il+s d=1+s—j e=j—1l+s f=j+1-s.

The algebraic steps to simplify equation (B.4) above are tedious, but give a simple
result, as shown in (3.17).

Appendix C. Calculation of €]°” for the magnetic field

We first substitute in (4.8) the expressions far and&™ given in (4.12), and then write
R,y in terms of the reduced matrix elementsiif Further, using equation (4.13) we obtain
the following expression foR;{IT;:

H
(s'o’t'|R1I|soT) = {i,/ E|:\/,u, +v—o0 +1{so,1—1|s'0")

k
+/u+v—oso, 11|s/0/)] + 72(so10|s/0/)}

x [=(s7, 12s't") + (s7, 1 — 1Is't) | ({n}ss | R {n}ss). (C.1)

We then substitute the Clebsch—Gordan coefficients as well as the reduced matrix
elements ofR given in (3.12) and simplify. Using arguments similar to those presented in
appendix B, we obtain

TS0 __ T —(n/2—s)(n/2+s+2) ﬂ _ 2 2
“ { (s+Dx2s+1) [2(2(‘““) o)s"+o"+35+2)

na?

+(s—0+1)(s—o+2))+k2(s—6+1)(s+0+1):|

(n/2+1?[H
s2(s + 1)2 [§<2(“+”_”)(52—02+S)+(S+0)(s ~0 +1))
n/24+s+1)(n/2-s+1H[H
+k202} i 5225 + 1) [E(z(“ +v o)’ +o%—9)

which can be further simplified to obtain the final result shown in (4.16).
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