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Abstract. In previous papers, with the same series title, anab-initio procedure was developed
for deriving a Lorentz invariant equation with arbitrary spins. This equation is linear in the four
momentumpν , and its coefficients are matrices that can be expressed in terms of ordinary spin
and what we called sign spin. In the present paper we consider this equation in an external field
Aν which implies just replacingpν by5ν = pν−Aν and discuss the cases whenA0 = 1

2(r
2/a2)

(a =
√
mc2/h̄�, � being the frequency of the oscillator),A = 0 andA0 = 0, A = 1

2(r ×H)
corresponding respectively to harmonic oscillator potential and a constant magnetic field. By
using an appropriate complete set of states, with part of them characterized by the irreps of
the chain of groups SU(4) ⊃ SUs (2)⊗ SUt (2) where the subscriptss and t respectively stand
for the ordinary and sign spin, the problem can be formulated in a matrix representation whose
diagonalization gives the energy spectrum. For simplicity we shall only consider the symmetric
representation{n} of SU(4) for which s = t , and our interest is focussed on the case when the
external field is weak, which gives the non-relativistic limit, and where a perturbation analysis
can be applied. We show that the expected non-relativistic result can be obtained only when the
sign spin projection takes its maximum value, i.e. when all individual states contributing to the
final one correspond to positive energies. In the case of constant magnetic field, we obtain the
gyromagnetic ratio 1/s consistent with other derivations.

1. Introduction

In two previous papers [1, 2] with the same series title (in what follows these will be
referred to as I and II) we discussed how a relativistic wave equation of arbitrary spin could
be formed from the sum ofn free particle Dirac equations in which all the momenta are
taken as equal. In I we used theαi , β, i = 1, 2, 3 formulation of the Dirac equation and
in II the γν, ν = 0, 1, 2, 3 formulation. However, in both cases our main interest was to
show that the matrices mentioned could be decomposed into direct products of ordinary spin
matrices and a new type of them that we call sign spin. The problem reduces then to one in
terms of the generators of a U(4) group, entirely similar to the one in the spin–isospin theory
of nuclear physics and hence the name of supermultiplets in the title. In I we characterized
our states by irreps of the U(4) ⊃ Û(2) ⊗ Ŭ(2) chain of groups in whicĥU(2), Ŭ(2) are
respectively the ones associated with the ordinary and sign spins. In II, where we used the
γ notation and proved that our equation of arbitrary spin is Poincaré invariant, we noted
that our problem is also invariant under a unitary symplectic subgroup Sp(4) of U(4) and as
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the former is isomorphic to O(5) we could characterize our states by irreps of the canonical
chain O(5) ⊃ O(4) ⊃ O(3) ⊃ O(2).

For the integrals of motion associated with a given irrep of O(5) we have, in general,
several possibilities of spins and masses for our particle, as shown in II.

In II we discussed only free particles, but in another publication [3] we analysed the
effect of an external potential, which for simplicity we took as the harmonic oscillator,
on our particle in theαiu, βu, i = 1, 2, 3, u = 1, 2, . . . , n, formulation. The results for
positive energies made sense in the case of a weak potential, i.e. much smaller thanmc2

wherem is the lowest mass of our particle, but became less clear when we had a strong
potential, i.e. of ordermc2.

This situation led us to discuss in this paper what the correct non-relativistic limit of
a particle with arbitrary spins in an external potential is, in order to see from which one
we could extrapolate our results as the potential increases. In this paper we start with the
γ formulation, so as to have a Poincaré-invariant problem in the free particle case which
we called the Bhabha equation [4, 5], and introduce a potential by the minimal extension
in which the momentum four vectorcp′ν, ν = 0, 1, 2, 3 is replaced bycp′ν − A′ν , where
A′ν is also a four vector. The prime is used to indicate that all quantities are in CGS units.
We shall discuss the problem in a particular frame of reference in whichA′ν takes a simple
form, for exampleA′0 = (m�2r ′2/2), A′i = 0; i = 1, 2, 3, the harmonic oscillator potential
or A′0 = 0, A′i = (e/2)(r′ ×H′)i , the external constant magnetic field.

2. The Bhabha equation in an external field

From the discussion given in II [2] and the observations in the last paragraph of section 1
above we conclude that the wavefunction of a Bhabha particle in an external field satisfies
the equation

[0ν(cp′ν − A′ν)+ nmc2]ψ = 0 (2.1)

where, as above, we use CGS units and denote the four momentump′ν and its minimal
extensionA′ν with a prime, as we wish to reserve the ordinary form of these letters when
using appropriate units.

As indicated in equation (2.6) of II0ν is given by

0ν =
n∑
r=1

γ νr (2.2)

whereγ νr is the direct product of 4× 4 matrices

γ νr = I ⊗ I · · · ⊗ I ⊗ γ ν ⊗ I · · · ⊗ I (2.3)

with γ ν in the r position and in it the Pauli matricesσi, i = 1, 2, 3 are replaced byσir .
As we indicated in II theγ νr can be expressed by direct products involving 2×2

matrices corresponding to the ordinary and sign spins given respectively bysjr , tkr; j, k =
1, 2, 3, r = 1, 2, . . . , n, as well as their appropriate unit matricesÎ , Ĭ . From equation (3.6)
of II we see that equation (2.1) can then be written as

[4iRj2(cp
′
j − A′j )+ 2T3(cp

′
0− A′0)+ nmc2]ψ = 0 (2.4)

where repeated latin indies are summed over their valuesj = 1, 2, 3 andRj2, T3 are part
of the 15 generators of an su(4) Lie algebra given by equation (3.9) of I, i.e.

Si =
n∑
r=1

(sir ⊗ I ) Rij =
n∑
r=1

(sir ⊗ tjr ) Tj =
n∑
r=1

(Î ⊗ tjr ). (2.5)
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As we showed in equations (3.13) and (3.14) of I the ordinary and sign spin part of our states
will be characterized by a partition{h} of n in at most three numbersh1 > h2 > h3 > 0,
h1 + h2 + h3 = n. In the present paper we shall, for simplicity, limit ourselves to the
symmetric partitionh1 = n, h2 = h3 = 0 and denote it by{n} . Furthermore the ordinary
and sign spin states will be characterized by the sˆu(2)⊗ sŭ(2) algebras in equation (3.13)
of I and their corresponding ˆo(2) ⊗ ŏ(2) subalgebras so their ket can be denoted as in
equation (3.14) of I by

|{n}sσ tτ 〉 (2.6)

where no irrep(s, t) of sû(2) ⊗ sŭ(2) is repeated so the extra quantum numberγ in
equation (3.14) of I is not required. We note also that for the symmetric representations
{n} of su(4) the irreps of the subalgebras sˆu(2), sŭ(2) are the same [6], i.e.s = t and
σ, τ = s, s − 1, . . . ,−s. Thus in the following we either suppress thet or replace it bys
in (2.6).

The orbital part of the states in (2.4) depends on the particular form of the external
potentialA′ν and thus will be discussed in the next section.

3. The wave equation for a Bhabha particle in a harmonic oscillator potential

We shall now assume that, in a particular frame of reference, the minimal extension ofcp′ν
is an oscillator potential forν = 0, i.e.

A′0 = 1
2m�

2r ′2 A′i = 0 i = 1, 2, 3 (3.1)

wherem is the mass of the particle and� the frequency of the oscillator.
The first convenient step for attacking the problem is to divide equation (2.4) bymc2

and then replacep′j , j = 1, 2, 3, by pj , andr ′ by r through the relations

p′j = (m�h̄)1/2pj r ′ = (h̄/m�)1/2r (3.2)

so that equation (2.4) becomes dimensionless.
Furthermore, asA′ν does not depend on the time,cp′0 is an integral of motion and in

the metric we use, the covariantcp′0 is equal to the negative of the contravariant one, i.e.
−cp′0, with the latter being the energy−E of the particle. Thus after carrying out all these
replacements we see that equation (2.4) transforms into[

4iRj2pj

a
− 2T3

E

mc2
+ n+ 2T3

1

2

r2

a2

]
ψ = 0 (3.3)

where

a =
√
mc2

h̄�
(3.4)

and in the non-relativistic limita � 1 or h̄�� mc2.
We note from the definition (2.5) ofT3, that in the basis of the states whose ket is given

in (2.6), its matrix representation is diagonal and could be written as

τδτ ′τ δs ′sδσ ′σ . (3.5)

If n is odd, τ is semi-integer and, as it cannot take the value 0, the inverse ofT3 exists
and is given by (3.5) ifτ is replaced byτ−1. If n is even,τ can take the value 0 and
thus the inverse remains undefined, but as we can project out this value, as indicated in [7],
we can still assume the existence ofT −1

3 for all values ofτ except 0. Furthermore, in
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equation (3.8) of II we have that the commutator [T3, Rj1] = iRj2, so using this result
in (3.3) and multiplying equation (3.3) by(2T3)

−1 we can write it as

(E/mc2)ψ = [(2/a)(Rj1− T −1
3 Rj1T3)pj + (2a2)−1r2+ n(2T3)

−1
]
ψ

≡ (H/mc2)ψ (3.6)

where the term in the square bracket can now be considered as our HamiltonianH as its
eigenvalue is the energyE, both in units ofmc2.

As equation (3.6) is not soluble exactly we need its matrix formulation with respect to
an appropriate basis which we proceed to determine. The ordinary and sign spin part was
already obtained in (2.6). For the orbital part we choose a three-dimensional oscillator of
unit frequency, as required by relations (3.2), and which we denote by the ket

|Nlµ〉 = RNl(r)Ylµ(θ, ϕ) (3.7)

with Ylµ being the spherical harmonic andRNl the radial part.
For the complete ket we couplel and s to the full angular momentumj , as it is an

integral of motion becauseRik is a first-order Racah tensor [8] in both ordinary and sign
spin and it is contracted with the momentumpi . Thus our ket becomes

|N(l, s)jm; {n}sτ 〉 =
∑
µσ

〈lµ, sσ |jm〉|Nlµ〉|{n}sσ sτ 〉 ≡ |ψ〉 (3.8)

where〈·|·〉 is a Clebsch–Gordan coefficient and we take into account that we are dealing
with the symmetric irrep{n} of su(4) so thatt = s.

Before evaluating the matrix elements of(H/mc2) in the square bracket of (3.6),
between bras and kets of the form (3.8), it is convenient to expressRj1pj (where the repeated
index j is summed over its valuesj = 1, 2, 3) in terms of the spherical components. From
the definition of these components for a vectorv, i.e.

v+ = −(1/
√

2)(v1+ iv2) v0 = v3 v− = (1/
√

2)(v1− iv2) (3.9)

we see that

Rj1pj =
∑
q

(−1)q(1/
√

2)(−Rq+ + Rq−)p−q q = +1, 0,−1 (3.10)

with the subscript± denoting theq-values asq = ±1.
Using then the standard results of Racah algebras [8], as well as the Wigner–Eckart

theorem, we obtain the matrix elements

〈N ′(l′, s ′)jm; {n}s ′τ ′|(H/mc2)|N(l, s)jm; {n}sτ 〉

=
{
(n/2τ)δN ′Nδl′lδs ′sδτ ′τ

}
+ (1/a)

{
2[1− (τ/τ ′)]

× (−1)l
′+s−j [(2l′ + 1)(2s ′ + 1)]1/2

×W(ll′ss ′; 1j)〈N ′l′‖p‖Nl〉〈{n}s ′s ′‖R‖{n}ss〉

× (1/
√

2)[−〈sτ,11|s ′τ ′〉 + 〈sτ,1− 1|s ′τ ′〉]
}

+
{
(1/2a2)〈N ′l′‖r2‖Nl〉δs ′sδτ ′τ δl′l

}
(3.11)

whereW and 〈·|·〉 are respectively the Racah and Clebsch–Gordan coefficients and the
reduced matrix elements〈N ′l′‖p‖Nl〉, 〈N ′l′‖r2‖Nl〉 are given in [3, equation (5.6)]. It
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remains for us to discuss the reduced matrix element ofRqq ′ , q = +1, 0,−1, for the
symmetric partition{n}. It was originally obtained by Ahmed and Sharp [9], but this
contained a misprint. We re-derive it in appendix A and obtain

〈{n}s ′s ′‖R‖{n}ss〉 = 1

2

{
δs ′s+1

√
(2s + 1)(n/2− s)(n/2+ s + 2)

2s + 3

+ (n+ 2)

2
δs ′s + δs ′s−1

√
(2s + 1)(n/2+ s + 1)(n/2− s + 1)

2s − 1

}
. (3.12)

Thus the algebraic expression for all the matrix elements of the operatorH/mc2, given
by the square bracket in (3.6) with respect to the states (3.8), is fully determined. We now
proceed to analyse its different terms to arrive at its non-relativistic approximation.

We note that in (3.11) there are three curly brackets which correspond to increasing
powers of the parameter 1/a. The first of power 0 in 1/a is diagonal in all the quantum
numbers, and is given byn/2τ , so it corresponds to different masses (or rest energies) of
the Bhabha particle [2], and whereτ can take the valuesn/2, n/2− 1, . . . ,−n/2. It is the
zero-order approximation to our energy (in units ofmc2) and thus we can denote it as

ετ0 ≡ n/2τ. (3.13)

Note that in II the letterλ replacesτ .
The second curly bracket is of power 1 in 1/a. However, We cannot use first-order

perturbation theory to evaluate it because, from the Clebsch–Gordan coefficient appearing
there, it vanishes ifτ ′ = τ , whatever the values of the other quantum numbers. Thus we
are forced to go to second-order perturbation theory [10] to obtain its contribution to the
energy through the evaluation of

ετ1 ≡
1

a2

∑
ψ ′

〈ψ |O|ψ ′〉〈ψ ′|O|ψ〉
ετ0 − ετ ′0

(3.14)

where|ψ〉 is a shorthand notation for the ket (3.8) while|ψ ′〉 has the same meaning with
all the quantum numbers primed exceptj,m. The operatorO is given by

O = 2[(Rj1pj )− T −1
3 (Rj1pj )T3] (3.15)

but asT3 is diagonal in all quantum numbers and with valueτ , using (3.5) we have

ετ1 =
4

a2

∑
ψ ′

{
[1− (τ ′/τ)][1 − (τ/τ ′)]

[n/2τ)− (n/2τ ′)] 〈ψ |Rj1pj |ψ ′〉〈ψ ′|Rj1pj |ψ〉
}

= 1

a2

8

n

∑
ψ ′

〈ψ |Rj1pj |ψ ′〉〈ψ ′|Rj1pj |ψ〉
τ − τ ′ . (3.16)

The matrix element of〈ψ ′|Rj1pj |ψ〉 is given by the second curly bracket in (3.11) when
we suppress the factor 2[1− (τ/τ ′)] and thus, because of strong selection rules, the
summation overψ ′ involves only a few terms and in particularτ ′ = τ ± 1. The analysis
is straightforward though laborious and is sketched in appendix B; thus we state only the
simple result here:

ετ1 =
1

a2

(
2τ

n

)
(N + 3

2)

2
for any state|ψ〉 of (3.8). (3.17)
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We now turn our attention to the last curly bracket in (3.11) which contains(1/a)2, but
where first-order perturbation theory can be applied to obtain

ετ2 =
1

2a2
〈ψ |r2|ψ〉 = 1

a2

(N + 3
2)

2
. (3.18)

Thus the total energy up to terms in(1/a)2 is given by

(E/mc2) = ετ0 + ετ1 + ετ2

= n

2τ
+ 1

a2

(
2τ

n

)
(N + 3

2)

2
+ 1

a2

(N + 3
2)

2

= n

2τ
+ 1

a2

(
N + 3

2

2

)(
2τ

n
+ 1

)
. (3.19)

Multiplying both sides of (3.19) bymc2 and using the definition (3.4) fora, we obtain

E =
(
n

2τ

)
mc2+ (h̄�)(N + 3

2

)[1

2

(
2τ

n
+ 1

)]
. (3.20)

For a givenn the energyE depends only on the total number of quantaN and on the
τ eigenvalue of the projectionT3 of the total sign spin.

We note that ifτ takes its maximum valueτ = n/2 then

E −mc2 = h̄�(N + 3
2). (3.21)

These would be the eigenvalues of the non-relativistic Hamiltonian

h̄� 1
2(p

2+ r2) = p′2

2m
+ 1

2m�
2r ′2

which is the one we would expect.
On the other hand, ifτ 6= n/2 we would still have an oscillator Hamiltonian but with

massm′ and frequency�′ given by

m′ = m(n/2τ) �′ = �
[

1

2

(
2τ

n
+ 1

)]
. (3.22)

Thus we see that the correct non-relativistic limit is achieved only whenτ = n/2, which
implies that all individual sign spin projections involved are pointing upward, i.e. that we
are only dealing with positive energy states as is usually assumed for the physical part of
the state in relativistic quantum mechanics. Other properties of the results derived in this
section will be discussed in the conclusion.

4. The wave equation for a Bhabha particle in a constant magnetic field

We shall assume, in a particular frame of reference, that the minimal extension ofcp′ν is a
constant magnetic field which implies we have

A′0 = 0 A′j = (e/2)(r′ ×H′)j j = 1, 2, 3 (4.1)

in (2.1). The first step for attacking this problem is to divide equation (2.4), in whichA′ν
is given by (4.1), bymc2 to make it dimensionless. Furthermore, as in the previous section
cp′0 = −cp

′0 = −E. Besides we replacep′j , r
′
j ,H′j , j = 1, 2, 3 through the relations

p′j = mcpj r ′j = (h̄/mc)rj H′ = m2c3

eh̄
H (4.2)
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so that equation (2.4) becomes[
4iRj25j − 2T3

E

mc2
+ n

]
ψ = 0 (4.3)

in which repeated latin indexes are summed over the valuesj = 1, 2, 3 and5j is given by

5j = pj − 1
2(r ×H)j . (4.4)

As in the previous section, we now use the commutator [T3, Rj1] = iRj2 and the reciprocal
of T3 to write (4.3) in the form

(E/mc2)ψ = {2[Rj1− T −1
3 Rj1T3

] [
pj − 1

2(r ×H)j
]+ n(2T3)

−1
}
ψ

≡ (H/mc2)ψ. (4.5)

We select our coordinate frame of reference in such a way thatx3 is in the direction of the
magnetic field, and define the creation and annihilation operators in the plane perpendicular
to the field as

ηi = 1√
2

[(H
2

)1/2

xi − i
(H

2

)−1/2

pi

]
ξi = 1√

2

[(H
2

)1/2

xi + i
(H

2

)−1/2

pi

]
i = 1, 2. (4.6)

Furthermore, in spherical components these operators became

η± = 1√
2
(η1± iη2) ξ± = 1√

2
(ξ1∓ iξ2). (4.7)

The term whose matrix elements are more difficult to determine isRj15j , so using
equations (4.7) and the reasoning in I, we first write it in spherical components of the
Rj1, as in equation (3.23) of I, i.e.

Rj15j = i
(H

2

)1/2[
η+(−R−+ + R−−)+ ξ+(−R++ + R+−)

]+ 1√
2
(−R0+ + R0−)p3.

(4.8)

The states with respect to which we want to determine the matrix elements ofH are given
in equation (3.21) of I by the ket

|µ+ ν − σ, ν, k{n}sστ 〉 =
(

η
µ+ν−σ
+ ην−√

(µ+ ν − σ)!ν!
|0〉
)

eikx3|{n}sσ sτ 〉 ≡ |ψ〉 (4.9)

where |0〉 is the ground state of the two-dimensional oscillator and, as in section 3, we
restrict ourselves to the symmetric partition{n} so s = t .

Our objective then is to determine the matrix elements

〈µ+ ν − σ ′, ν, k{n}s ′σ ′τ ′|(H/mc2)|µ+ ν − σ, ν, k{n}sστ 〉 (4.10)

where µ is the total angular momentum in the direction of the magnetic field, i.e.
µ = n+ − n− + σ andn+, n− are the number of quanta in+,− directions, i.e. exponents
of η+, η− in (4.9). Theµ does not change in the bra and ket, because it is an integral of
motion; the same holds forν ≡ n− andk as well as for the symmetric partition{n}.

Using the shorthand notation|sστ 〉 for the ket (4.9), i.e. suppressing all the integrals of
motion, we obtain

〈s ′σ ′τ ′|(H/mc2)|sστ 〉 = n

2τ
δs ′sδτ ′τ δσ ′σ + 2(1− [τ/τ ′])〈s ′σ ′τ ′|Rj15j |sστ 〉. (4.11)
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Then using the expression (4.8) forRj15j we see that we can determine the matrix
elements explicitly with the help of the fact that

η+|n+〉 =
√
n+ + 1|n+ + 1〉 ξ+|n+〉 = √n+|n+ − 1〉. (4.12)

We note also the first-order Racah tensor character in both ordinary and sign spin ofRqq ,
so from the Wigner–Eckart theorem we obtain

〈{n}s ′σ ′s ′τ ′|Rqq |{n}sσ sτ 〉 = 〈sσ, 1q|s ′σ ′〉〈sτ,1q|s ′τ ′〉〈{n}s ′s ′‖R‖{n}ss〉 (4.13)

where 〈·|·〉 are the Clebsch–Gordan coefficients and the reduced matrix element ofR is
given explicitly in (3.12).

As our HamiltonianH is divided bymc2 we see that to analyse the non-relativistic
limit we must assume that the dimensionless(H/2)1/2 andk are much smaller than 1. Thus
in equation (4.11) the term of order 0 is given byn/2τ , which corresponds to the different
masses (or rest energies in unitsmc2) of the Bhabha particle [2] and, as in section 3, we
denote it by

ετ0 ≡
n

2τ
. (4.14)

The second term in (4.11) is of the order(H/2)1/2 or k, both of which we assume much
smaller than one, but we cannot consider them in first-order perturbation theory as their
matrix elements vanishes ifτ ′ = τ . We thus have to go to second-order perturbation
theory, which from (4.11) becomes

ετsσ1 ≡ 4
∑
s ′σ ′τ ′

[1− (τ/τ ′)][1 − (τ ′/τ)]
ετ0 − ετ ′0

〈sστ |Rj15j |s ′σ ′τ ′〉〈s ′σ ′τ ′|Rj15j |sστ 〉

= 8

n

∑
s ′στ ′

{ 〈sστ |Rj15j |s ′σ ′τ ′〉〈s ′σ ′τ ′|Rj15j |sστ 〉
τ − τ ′

}
(4.15)

where because of (4.8) we have the selection rulesτ ′ = τ ±1; σ ′ = σ ±1, σ ; s ′ = s±1, s.
Substituting in (4.15) the value ofRj15j given in (4.8), one obtains in a straightforward

but laborious way, which is sketched in appendix C, the result that

ετsσ1 = 2τ

n
H(µ+ ν − σ + 1

2)+
τHσ

ns(s + 1)

[(
n

2
+ 1

)2

− s(s + 1)

]
+
(

2τ

n

)
k2

2
. (4.16)

As µ = n+ − n− + σ, ν = n−, for the total energy we can write

(E/mc2) = n

2τ
+
(H

2

)(
2τ

n

)
(2n+ + 1)+ τ

n
k2+ τHσ

ns(s + 1)

[(
n

2
+ 1

)2

− s(s + 1)

]
.

(4.17)

The first term in (4.17) is the rest mass in units ofmc2, the second term comes from the
interactions of purely orbital motion with the magnetic field, and is the one we expect non-
relativistically if the mass, in unitsmc2 of energy, isn/2τ . In addition to being related to
τ/n, the last term is related to the spins and its projectionσ . It is this term that gives a
non-trivial correction to the non-relativistic result.

As in section 3 the most important case will come when we consider purely positive
values of the projection of the sign spin, i.e. whenτ = n/2. Then of courses = n/2, and
our energy in cgs units becomes

E −mc2 = eh̄H′
mc

(n+ + 1
2)+

k
′2

2m
+ eh̄

2mc

H′σ
(n/2)

. (4.18)
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As in this casen/2= s, the gyromagnetic ratio is 1/s for the state of maximum sign spin in
the symmetric representation{n} of su(4). This result is in agreement with other derivations
of the gyromagnetic ratio [11–14].

We note, however, that ifτ 6= n/2 we obtain a result in (4.17) which is quite different
from those we expect in the non-relativistic limit.

5. Conclusion

Our conclusion is that the correct non-relativistic limit corresponds to the maximum
projection of the sign spin, i.e.τ = n/2, and that we should extrapolate from this state,
variationally and perturbationally, so as to obtain values for strong external fields that make
physical sense, i.e. that involve only positive values for the projection of all the sign spins.
This suggests that when wishing to obtain the correct spectrum for a relativistic problem, it
is convenient to express theγ matrices as direct products of ordinary and sign spin ones.
We then select a complete basis on which to give a matrix representation of our relativistic
Hamiltonian, but carry out a perturbation calculation on it in which the initial and final
states have only the value+ 1

2 for each of the sign spins. This then guarantees that we
obtain the positive energy part of our energy spectrum.

Appendix A. Calculation of the reduced matrix elements ofR

To find the reduced matrix elements ofR for the symmetric partition{n}, we first start
with the basis states which can be obtained by using SU(4) ⊃ SÛ(2) ⊗ SŬ(2) chain of
groups. We first defineηµi, ξµi as the boson creation and annihilation operators. The index
µ = 1, 2, 3, 4 is characterized by spin-sign spin(στ) values as follows:

µ 1 2 3 4

(σ τ) ( 1
2

1
2) ( 1

2 − 1
2) (− 1

2
1
2) (− 1

2 − 1
2).

(A.1)

For symmetric partitions the indexi takes only one valuei = 1 which we suppress.
The basis states [7] correspond to the product of powers ofη1 and (η1η4 − η2η3). The
highest state of the multiplet(ss) is then given by [9]

|{n}ssss〉 =
√

(2s + 1)

(n/2− s)!(n/2+ s + 1)!
η2s

1 (η1η4− η2η3)
n/2−s . (A.2)

The matrix elements ofRqq can be calculated by using the following correspon-
dence [15]:

R11 = 1
2C

4
1 R00 = 1

4

(
C1

1 − C2
2 − C3

3 + C4
4

)
(A.3)

whereCµ′µ = ηµξµ
′

are the SU(4) generators which satisfy[
Cµ′µ , Cν

′
ν

] = Cν ′µ δµ′ν − Cµ′ν δν ′µ since
[
ξµ
′
, ηµ

] = δµ′µ . (A.4)

Using relations (A.2)–(A.4) we obtain

R11|{n}ssss〉 = 1

2

√
(2s + 1)(n/2+ s + 2)(n/2− s)

(2s + 3)
|{n}s + 1, s + 1, s + 1, s + 1〉 (A.5)

R00|{n}ssss〉 = 1

2(s + 1)

√
(2s + 1)(n/2+ s + 2)(n/2− s)

(2s + 3)
|{n}s + 1, s, s + 1, s〉
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+ s(n+ 2)

4(s + 1)
|{n}ssss〉. (A.6)

We then use relation (4.13), and by noting thatR−1−1 = R
†
11 we obtain the reduced

elements ofR as given in (3.12).

Appendix B. Calculation of ετ1 for the harmonic oscillator

The second-order perturbative energyετ1 in 1/a2, given in (3.14), can be evaluated using
the matrix elements ofRjipj written in (3.11). By substituting in (3.11) the reduced matrix
elements ofR shown in (3.12) and those ofp given by

〈N ′l′‖p‖Nl〉 = i√
2

{√
l + 1

2l′ + 1
AlN ′Nδl′l+1+

√
l

2l′ + 1
BlN ′Nδl′l−1

}
where

AlN ′N =
√
N + l + 3δN ′N+1+

√
N − lδN ′N−1

BlN ′N =
√
N − l + 2δN ′N+1+

√
N + l + 1δN ′N−1

(B.1)

we obtain

〈ψ ′|Rjipj |ψ〉 = i

4a
δs ′s+1(−1)l

′+s−j√(2s + 1)(n/2− s)(n/2+ s + 2)

× [−〈sτ,11|s + 1τ + 1〉 + 〈sτ,1− 1|s + 1τ − 1〉]{√
l + 1W(ll + 1ss + 1; 1j)AlN ′N +

√
lW(ll − 1ss + 1; 1j)BlN ′N

}
+ i

8a
δs ′s(−1)l

′+s−j√(2s + 1)(n+ 2)

× [−〈sτ,11|sτ + 1〉 + 〈sτ,1− 1|sτ − 1〉]
× {√l + 1W(ll + 1ss; 1j)AlN ′N +

√
lW(ll − 1ss; 1j)BlN ′N

}
+ i

4a
δs ′s−1(−1)l

′+s−j√(2s + 1)(n/2+ s + 1)(n/2− s + 1)

× [−〈sτ,11|s − 1τ + 1〉 + 〈sτ,1− 1|s − 1τ − 1〉]{√
l + 1W(ll + 1ss − 1; 1j)AlN ′N +

√
lW(ll − 1ss − 1; 1j)BlN ′N

}
. (B.2)

We then substitute the explicit expressions for the Clebsch–Gordan and Racah
coefficients, and note that

ετ1 =
8

na2

∑
ψ ′

|〈ψ |Rj1pj |ψ ′〉|2
τ − τ ′ (B.3)

becauseRj1pj is a Hermitian matrix. We further note that the terms withτ ′ = τ − 1 give
positive contributions while those withτ ′ = τ + 1 give negative contributions because of
the presence of the factor(τ − τ ′) in the denominator of (B.3). Thus we have

ετ1 =
τ(N + 3/2)

4na2(2l + 1)

{−(n/2− s)(n/2+ s + 2)

(s + 1)2(2s + 1)

[
A

2l + 3
+ B

2l − 1

]
+
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+ (n/2+ 1)2

s2(s + 1)2

[
C

2l + 3
+ D

2l − 1

]

+ (n/2+ s + 1)(n/2− s + 1)

s2(2s + 1)

[
E

2l + 3
+ F

2l − 1

]}
(B.4)

where

A = (b + 3)(b + 2)(d + 2)(d + 1) B = (e + 2)(e + 1)f (f − 1)

C = (b + 2)(d + 1)(f + 1)e D = (b + 1)f d(e + 1)

E = (f + 2)(f + 1)e(e − 1) F = (b + 1)bd(d − 1)

b = j + l + s d = l + s − j e = j − l + s f = j + l − s.

(B.5)

The algebraic steps to simplify equation (B.4) above are tedious, but give a simple
result, as shown in (3.17).

Appendix C. Calculation of ετsσ1 for the magnetic field

We first substitute in (4.8) the expressions forη+ and ξ+ given in (4.12), and then write
Rqq ′ in terms of the reduced matrix elements ofR. Further, using equation (4.13) we obtain
the following expression forRj15j :

〈s ′σ ′τ ′|Rj15j |sστ 〉 =
{
i

√
H
2

[√
µ+ ν − σ + 1〈sσ, 1− 1|s ′σ ′〉

+√µ+ ν − σ 〈sσ, 11|s ′σ ′〉
]
+ k√

2
〈sσ10|s ′σ ′〉

}
× [−〈sτ,11|s ′τ ′〉 + 〈sτ,1− 1|s ′τ ′〉]〈{n}s ′s ′‖R‖{n}ss〉. (C.1)

We then substitute the Clebsch–Gordan coefficients as well as the reduced matrix
elements ofR given in (3.12) and simplify. Using arguments similar to those presented in
appendix B, we obtain

ετsσ1 = τ

na2

{−(n/2− s)(n/2+ s + 2)

(s + 1)2(2s + 1)

[H
2

(
2(µ+ ν − σ)(s2+ σ 2+ 3s + 2)

+ (s − σ + 1)(s − σ + 2)
)
+ k2(s − σ + 1)(s + σ + 1)

]

+ (n/2+ 1)2

s2(s + 1)2

[H
2

(
2(µ+ ν − σ)(s2− σ 2+ s)+ (s + σ)(s − σ + 1)

)
+ k2σ 2

]
+ (n/2+ s + 1)(n/2− s + 1)

s2(2s + 1)

[H
2

(
2(µ+ ν − σ)(s2+ σ 2− s)

+ (s + σ)(s + σ − 1)
)
+ k2(s2− σ 2)

]}
(C.2)

which can be further simplified to obtain the final result shown in (4.16).
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